Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 89(7): 1647-1664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619895

RESUMO

The study evaluated the impact of treated wastewater on plant growth through the use of hyperspectral and fluorescence-based techniques coupled with classical biomass analyses, and assessed the potential of reusing treated wastewater for irrigation without fertilizer application. Cherry tomato (Solanum lycopersicum) and cabbage (Brassica oleracea L.) were irrigated with tap water (Tap), secondary effluent (SE), and membrane effluent (ME). Maximum quantum yield of photosystem II (Fv/Fm) of tomato and cabbage was between 0.78 to 0.80 and 0.81 to 0.82, respectively, for all treatments. The performance index (PI) of Tap/SE/ME was 2.73, 2.85, and 2.48 for tomatoes and 4.25, 3.79, and 3.70 for cabbage, respectively. Both Fv/Fm and PI indicated that the treated wastewater did not have a significant adverse effect on the photosynthetic efficiency and plant vitality of the crops. Hyperspectral analysis showed higher chlorophyll and nitrogen content in leaves of recycled water-irrigated crops than tap water-irrigated crops. SE had 10.5% dry matter composition (tomato) and Tap had 10.7% (cabbage). Total leaf count of Tap/SE/ME was 86, 111, and 102 for tomato and 37, 40, and 42 for cabbage, respectively. In this study, the use of treated wastewater did not induce any photosynthetic-related or abiotic stress on the crops; instead, it promoted crop growth.


Assuntos
Brassica , Águas Residuárias , Fluorescência , Biomassa , Folhas de Planta , Água , Produtos Agrícolas
2.
Sci Total Environ ; 760: 144026, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341618

RESUMO

The appropriateness of using treated wastewater for crop or agricultural irrigation remains a bone of contention among experts and policymakers. Here, we outline and analyze not only the benefits but also the drawbacks of such a practice in order to suggest a way forward. To ensure that our review reflects the state-of-the-art in terms of technological advances and best practices, only literature published in the last decade is considered except for literature on the history of reuse. The review begins by highlighting growing water scarcity, the history of wastewater reuse in agriculture, and the limitations of existing studies. A short overview of the approach used in the write-up is outlined after the introduction. It then proceeds with an in-depth look at three broad areas: environmental impacts, public health impacts, and economic impacts. In terms of environmental impacts, effects on soil quality, water resources, plant growth, and soil microbial communities are analyzed. For each sub-area, the positive effects are described before the negative ones. The same approach is then applied to public health impacts, the focus of which is on human exposure to heavy metals and pathogens, and economic impacts, which are assessed with particular reference to investment cost, financial benefit to wastewater treatment plants (WWTPs), farm expenditure and income. Having weighed the advantages and disadvantages in each area, innovative measures are proposed for optimizing the benefits and mitigating the drawbacks of using treated wastewater for crop irrigation. Special consideration was given to contaminants of emerging concern and the known or perceived environmental and health risks associated with these contaminants.


Assuntos
Metais Pesados , Águas Residuárias , Irrigação Agrícola , Agricultura , Humanos , Metais Pesados/análise , Solo , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA